Frames as a Model for the Analysis and Description of Concepts, Conceptual Structures, Conceptual Change and Concept Hierarchies

Dietrich Busse (Düsseldorf)

Summary

Frame models are generally understood to be instruments for explaining, analysing and describing concepts or terms and conceptual structures. They are also suitable, however, for describing conceptual change, or for describing changes in entire conceptual systems and concept hierarchies or systems of classification. The concept of “frame inheritance” as used by some frame researchers particularly emphasizes the classificatory aspect of conceptual knowledge. Although current frame research has yet to provide complete approaches to analysis and description of conceptual systems, the author of this chapter would like to show how an analysis of conceptual knowledge and concept hierarchies can gain in clarity and options for structuring by using a standpoint that reflects frame theory.

1. Introduction

Human knowledge, especially abstract knowledge, is generally understood to be conceptual in nature and seen as structured by concepts. This is a truism as long as one accepts that the term “concept” or its derivation “conceptual” refer not only (or at least not primarily) to words, that is linguistic signs, but principally to the mental content or knowledge components behind them. Even though serious philosophical and linguistic doubts are often raised about the concept of “concept”, and have in particular been raised about many current theoretical and philosophical conceptions connected with this term, yet this term and the idea of an analysis of knowledge in the form of a conceptual analysis are still (again?) enjoying a certain popularity and currency. This is true especially in recent and very recent tendencies, in the cognitively based research on cognition, knowledge, and significance, concentrating on the terms “term” or “concept” as the core of the theoretical models.

More recent cognitive science (which combines cognitive psychology approaches, philosophical and thought theory approaches, linguistic and language-theoretical approaches, and artificial intelligence models) in particular mostly uses concepts and conceptual structures (or ontologies) in its central theoretical considerations. More advanced models from this area actually attempt to theoretically throw light on the precarious relation, always present to some extent when using the term “concept”, between individuality and society, individual-psychological disposal and the supra-individual, conventional, social character of the knowledge structures which constitute concepts, between concrete situative realisations referring to individual cases (tokens) and the general knowledge structure transcending the individual case (type). One theory in particular, that of frames, created in such surroundings through impulses from linguistics and cognitive science, offers a model with which the structure of conceptual (or, if preferred, concept-related) knowledge can not only be explained, but practically described, too. While in conventional research on concepts as practised in all disciplines (mostly, but not always, carried out empirically for, and within the area of history of concepts) a more hermeneutic – often quite strongly intuitive – form of description of conceptual structures or significance dominates, we need to demand of a systematic conceptual analysis that it be able to serve both to explore and to describe the knowledge of concepts, to as great an extent on the basis of reflected, systematic methodical steps (as far as this is possible at all in the fields of analysis of knowledge and of semantics).

In the following are some thoughts on what such a systematic analysis might look like if
the means of the so-called frame semantics are applied. It is assumed that the approach suggested (or any such related one) is valid as a universal theory and method for various conceptual domains (disciplines), and that it is suited especially (and more so than other, older models of semantic and conceptual analysis) to lay open and describe the structures of very complex abstract concepts and conceptual systems. After a short reflection on some problems of important basic terms in theory and of method, as well as aspects of concepts, concept theory, and conceptual analysis, the conceptual model of frame analysis will be briefly sketched before the question of why exactly this model was chosen for the descriptive approach to conceptual analysis will be answered. After that, specific aspects of conceptual relationships and systems will be dealt with, so as then to reflect on the possibilities and limits of frame-semantic conceptual analyses, especially in view of the aims of a history of concepts.

2. The Concept of “Concept”

One may notice a usage of the terms “concept” and “meaning”, often quite unreflected, in many contributions dealing with linguistic problems, both within and outside of the language sciences, and even in language philosophy. This shows that the background to this usage is first of all everyday language, or at most the usage in specialist disciplines, but without any linguistic reflection. The unit “concept” being chosen for the reference point of semantic analysis expresses in itself a certain understanding of the function and value of “concepts”, which ascribes a central role to these in the process of linguistically delimited acquisition (or constitution) of reality (or knowledge of the same). In everyday use, the expressions “word” and “concept” are not clearly distinguished. Definitions, such as those often met with in dictionaries, which explain “concept” with “meaning of a word, ideal content”, do not by any means cover the everyday use of this expression. In many, if not most, non-specialist uses, “concept” is a synonym of “word”, although not an exact one. This everyday understanding thus reflects the fact that ideal content is not as simple to separate from the word(s) bearing it as it might seem. Yet “word” and “concept” are not used in an identical way in everyday speech. The main meaning of “word” clearly has to do with specifically linguistic characteristics, the language sign (Saussure’s signifiant, the external side of the linguistic sign), whereas the main meaning of “concept” places the aspect of the sign, the external side of the linguistic sign, more in the background, emphasising the meaning (Saussure’s signifié, the internal side of the linguistic sign, the mental momentum of “comprehending”). But in the use of “concept” in everyday language, the intellectual side of the sign is not completely separated from the specifically linguistic side, the character of the word possessed by the linguistic sign, in contrast to such separation in scientific texts. Daily language, as a rudimentary reservoir of centuries-long theoreticisation processes, thus reflects the variance in the definition of “concept” that has been an integral part of thinking about language since Plato.

Two determinants still dictate today what is generally understood by “concept”: on the one hand, concept as an abstractive synopsis of object characteristics, on the other, concept as a higher-ranking word (in relation to its abstractive function). The aspect of linguistic signs being used in communicative acts of expression, and that this use can be not only meaningful, but also forms the power of language to constitute reality, has, by contrast, been overlooked with regard to the definition of “concept” and “word” and their differentiation. It has been overlooked by a perception and conception of language which

1 This remark refers to the German term “Begriff” as defined in a popular dictionary (Wahrig 1979, col. 614 f.). The English term “concept” seems not to reflect the double meaning of “word” (of a certain kind) and “meaning/content of a word” as the German “Begriff”. (For more details cf. Busse 2011 and Haller and Mittelstrass 1971)
wanted to see thinking (and thus the mental side of concepts) as independent of language, which was wrongly seen as a purely mediating instrument.

The problem for every analysis of concept is how to deal with the subsumption (in a traditional understanding of language) of the concept, perceived as purely mental and therefore individual, in the form of linguistic signs by the medium of language, which transcends the individual. The perception of concepts as purely cognitive entities leads to any conceptual idea being private, if the constitution of the ideas (or, put in a more modern way, the cognitive representations) cannot be shown to be a genuinely linguistic process. The thought of a completely private nature of conceptual ideas is a wrong assumption when the analysis of concepts is to be used to represent the analysis of trans-individual (and only in this sense objective) knowledge. Concepts must be intersubjective, "objectivisible", by means of language as a process of communication and understanding. According to Wittgenstein, we learn the concepts with the meanings of the words in their usage; they are not delimitable or finite. A single word has a meaning for us only when it is used in a concrete context, and only against the background of the systems of significance constituted by language, called "language games" by Wittgenstein. "Wenn sich die Sprachspiele ändern, ändern sich die Begriffe, und mit den Begriffen die Bedeutungen der Wörter." ("When the language games change, the concepts change, and with the concepts the meanings of words.") And with these, the things we have referred to with the words change for us, too; our image of reality changes.

What is commonly referred to as "conceptuality" appears to be a conglomerate of attributions of characteristics, abstractions, cross-reference and situational reference, all of which is the result of a multitude of communicative acts in which individual linguistic signs can be the trigger or the point of reference, of crystallisation of aspects of meaning (themselves constituted by the context of application), but which can never represent the "object" (or the "concept") as a unit in its totality. Concept words thus serve as the inducement to the synopsis of communicative experiences, which can never be exactly the same for all speaking individuals of a language community. That which one could designate a "concept" is not constituted by individual uses of signs, but by the totality (or by a multitude) of sign uses in a continuum of expressive acts, texts, and discourses. If one wants to reconstruct "concepts" analytically, one must look for them at their place of constitution, the acts of sign use within the framework of communicative acts (regardless of whether these occur orally or in the form of texts and text constituents).

Since the "cognitive turn" at the latest, models are en vogue in linguistics and linguistic philosophy that regard "concepts" as a purely mental phenomenon. Cognitive scientists, in particular, mostly talk of a "level of concepts", which is often wrongly seen as being separable from the "level of language". According to the interpretation accepted here, the question of a possibly language-independent level of concepts, or one existing pre-linguistically, and in either case used to describe the relation of cognition and language with regard to the language and cognition of the people using language does not pose itself. As far as people have a language and use it, as Wilhelm von Humboldt said so...
unforgettably, it may be assumed that “the word, ... adds a good part of itself to the concept.” (“The word which first makes the concept an individual in the mental world also adds a considerable part of itself, and, as the idea receives by means of the same determination, it is simultaneously held within certain limits.”)\(^6\) If one takes “concept” here to be chiffre for thought, the episteme, the knowledge structures, then the relation between linguistic elements and elements of knowledge (cognition) is as follows, according to Humboldt. Even when the thesis of a complete identity between language (e.g. the semantics inherent to language in their sum) and knowledge (or thought) is not being supported here, yet the fact that epistemic matter can only (or mostly) be expressed and thus communicated in linguistic form does considerably influence the structure and content of knowledge itself. (“The word... also adds a considerable part of itself.”) Knowledge elements can only be identified as such in that we have the linguistic means to isolate them and to evoke them. (“The word ... makes ... the concept an individual in the mental world....”) Without words (linguistic means of expression) there are no identifiable thoughts (epistemic elements); only through them does what is thought first receive an identity, the ability to be (re)called and repeated; but this also means that only by means of words does thought become changeable and able to acquire a history. (“The idea attains definiteness through the word.”) At the same time, the linguistic means give structure to the epistemic and limit it, tying it into the corset of linguistically constituted structures, as it were. (“The idea is held captive by the word in certain limits.”)

By way of a preliminary conclusion, then, the unit “concept” cannot considered in complete dissolution from units of the type “word” (or more exactly: “linguistic sign”). Quite apart from what one may think of their relation as a theoretical consideration, it is irrefutably the case that a practical, analytical approach to concepts can only be made through words, texts, text corpora. Words (texts, linguistic-communicative acts) are thus the decisive key to access to the concepts, to the content behind the words, to the knowledge communicated or alluded to in language. The relation between word and concept becomes accessible primarily through the momentum of knowing, the episteme. Cognitive processes in the language-using human being operate to a greater (and in our context more interesting) extent on and with knowledge which has been constituted and structured in the use of language. The connecting factor is the schematisation of knowledge and the architecture resulting from this.\(^7\) The concept of frame has been suggested for these formations of schemata. In linguistics this is known as the concept of the “semantic frame” in the sense of the “interpretive semantics” of Charles Fillmore.\(^8\) In the field of general cognitive science, it was Marvin Minsky\(^9\) who exemplified the frame character of the knowledge required for certain optical perceptions.\(^10\) I personally prefer the term “knowledge frame”, so as to emphasise the general, basic nature of this concept.

The formation processes of schemata (or the formation of knowledge frames) are linguistic insofar as only (or, if you want to be more cautious, especially) the active use of the schemata (frames) in acts of linguistic communication stabilises (gives them continuity) these schemata, enriches them with knowledge, and renders them changeable. “The word adds a part of itself to the concept” (Humboldt), in that the epistemic schemata which form

6 "Ueber das vergleichende Sprachstudium" (1820), cited after Humboldt (1985, 20).
7 On the aspect of the architecture of knowledge, cf. the considerations in Busse (2005).
8 For an overview, cf. Fillmore (1977) and (1982); he speaks there, too, of the “semantics of understanding”.
10 Here with a clear reference to the schema theory of Bartlett (1932); on the central role of Bartlett’s schema theory in frame theory, s. Busse(2012, 311 ff.).
concepts, but also those that go beyond this, are only laden with epistemic material (elements of knowledge) through their use in the context of linguistic expression/texts. (With an eye to the theory of signification or meaning, it makes some sense in this context to recall Husserl's distinction – referring to the interpretation of signs and symbols – between “sense-giving (mental) acts” or “meaning-conferring (mental) acts” and “meaning-fulfilling (mental) acts”. One may assume that this distinction can also be established in the case of schemata/frames. One could then speak of “fully specified” frames and distinguish these from frames that are not epistemically/with regard to content fully specified, which however would not permit complete comprehension.) As both the linguistic signs and the frames/schemata forming the basis of their being comprehended can fulfill their (complete) epistemic function only within a context, one can speak of a process of “contextualisation” with regard to the reasonable comprehension of linguistic signs (sentences, texts).

Language is, if one will, the “medium” in which not only articulation and communication of social knowledge takes place, but in which this knowledge is, at the same time, constituted and structured as such (i.e. as social knowledge). Language (and language events such as texts) is thus by no means the “archive” of this knowledge. If an “archival” metaphor is to be applied in any way at all to language, then one could perhaps best characterise language as the “index” or “register” of the archive of social knowledge. This “index” or “register” contains only references; these references are to something that every speaker of the language must first of all epistemically realise and substantiate for him- or herself in the course of the process of understanding (more precisely: in the course of the processes of concluding and inference that lead to comprehension). One can call this in Husserl’s sense the “fulfillment of sense”. Language as the register of knowledge fulfills its task in that the individual signs and their specific combinations “evoke” (Fillmore) knowledge (frames, schemata and frame or schema complexes) in each case. Frame theory, with its foundation in and on cognitive and linguistic-semantic science, is an effective means of making accessible, and describing, the epistemic content of concepts more precisely than was possible with the old models of semantic or conceptual “feature-lists” or “lists of semantic markers” (so-called “checklist semantics”, as Fillmore called it in his severe criticism of 1975). How this is possible, and how it is done in practice, will be explained in more detail in the following.

3. The Conceptual Model of Frame Theory (What is Frame Semantics?)

Generally, frame theories (theories of knowledge frames) understand these frames (or knowledge frames) as “structures consisting of concepts or ideas”. Frame semantics, or – more generally considered – frame theory as it is presented today (particularly in linguistics) is, nevertheless, not a monolithic block, not a closed model, but rather a heterogeneous set of concepts with the most varying ancestries in different branches of science, each of which shows, to some extent at least, very different goals of knowledge, objects of research, and basic assumptions. The frame semantics of the linguist Charles J. Fillmore (and of the research association founded by him, FrameNet, with its centre in Berkeley) – the only genuinely linguistic frame concept – is rooted in thoughts and
theorems, some of which are quite different from those of the frame models in the
cognitive sciences, such as the models of Marvin Minsky (1974 and 1986), Schank &

While Fillmore’s linguistic frame model had and still has roots and theoretical points of
reference to a much greater extent in valency grammar and the syntactic theory of “case
frames” derived from this in Fillmore (1968), the cognitive frame concepts of Minsky and
Barsalou or the closely related script model of Schank & Abelson, have borrowed heavily
from the schema concept of the memory psychologist Frederick Bartlett (1932). While
Fillmore focuses on “frame evoking” types of word, primarily verbs in their function as
semantic and syntactic structural centres of the sentence frame (and evaluates the other
types of word, such as nouns, adjectives, adverbs etc. primarily with regard to their
function in a semantic or knowledge structure dominated by the verb), Barsalou’s (1992)
frame idea – as Minsky’s (1974) – aims primarily at the nomen (nominal concepts/ideas).

If, then, a frame (knowledge frame) is defined as a “structure consisting of concepts”, then
this means something else for Fillmore than it does for Barsalou or Minsky. A frame
according to Fillmore would be a structure consisting in concepts/ideas forming, for
example, the basis for the semantics of a sentence (meaning concepts for the verb content,
for the subject noun, for the object noun[s], and so forth). In contrast, a frame according to,
say, Barsalou would be an epistemically or cognitively viewed (nominal) concept, complex
and structured of and for itself, which in turn consists of (sub- or part-)concepts; every
frame is itself, in turn, a structure consisting of frames, or, in Barsalou’s terminology, every
concept (every idea) must be comprehended as a structure of concepts (ideas). (The idea
of the recursivity of all frame structures or conceptual structures or knowledge structures
which underlies this thought was, incidentally, borrowed from linguistic syntactic theory by
the cognitive scientist Barsalou.)

What Fillmore’s sentence- or verb-oriented conception has in common with the general
cognitive frame model founded by Minsky (1974) is to be found primarily in what makes up
the charm, the distinctiveness, and the essential core of frame theories and what has
rendered them so attractive to so many different circles of scientists in various disciplines,
namely talking of slots (or, in Minsky (1974), terminals), here understood as blank
positions, of argument places, and their fillers. Valency theory in linguistics, which deals
more with sentence structures, borrowed this basic idea (at least implicitly) metaphorically
from chemistry, or, more exactly, from the conceptual difference between the bonding
ability of atoms and the concrete bonds met with in given molecular structures. By the
circuitous road of linguistic valency grammar, primarily focused on sentences and the
binding ability of central sentence predicates in the form of verbs as a basic idea, and its
semantic extension to case frame theory in Fillmore (1968), this model was then
transferred to the content structures of concepts. Here a few points should be mentioned
which act as the centre of the frame idea being discussed and further developed in many
disciplines (such as linguistics, cognitive science, psychology).

A frame or knowledge frame is a structure of knowledge in which a certain constellation of
knowledge elements is grouped, with reference to a structural frame core which can be
understood as an “object” or “theme” of the frame; the constellation of knowledge elements
functions in this perspective as frame-constituting elements. These knowledge or frame
elements are not epistemic quantities “filled out” with concrete data; rather, they act as

15 Recursivity in the syntactic sense means the embedding of a sub-structure with a certain construction in
the (super-)structure of the same type. Thus, for example, a nominal group such as the friend’s father’s
brother’s house itself contains an attributive nominal group the friend’s father’s brother’s, which in turn
contains an attributive nominal group the friend’s father’s. According to Barsalou (1992), such recursions
are in principle endless when the principle is described within frames, i.e. endlessly divisible or refinable.

16 The following description is based on the thesis-like summary of the core ideas of frame theory/ies in
Busse (2012, 819 ff.).
slots, to which, in an epistemic contextualisation (embedding, “filling”), concrete (“filling out”) knowledge elements (so-called “fillers”, “values”, or attributions) are allotted.17

Thus, frames represent knowledge structures (to put it in somewhat simple terms) that attach to a category certain attributes, which in turn can be filled out with certain concrete values. (In other frame theories, the attributes are called “empty places” or “zero places” or “slots” and the values are called “fillings” or “fillers”.) The type and number of attributes of a frame is not laid down once for all, but varies. Thus, new attributes may be added.

Frames are then generally understood to be \textit{structures made of concepts} (“concepts” understood here as purely epistemic quantities or entities), which, since all concepts in turn are structured in the form of frames, reveal themselves to be structures made of frames. As far as frames essentially specify (epistemic) possibilities and constraints of exclusion (of further detailed frame elements), their structure can be described as an \textit{arrangement consisting of epistemic relations} (to the attached elements and among them).

Since frames, in this view, are basic structures (elements) of cognition/knowledge, and thus are to be assumed on all levels of their description, it follows compellingly that different \textit{levels} and \textit{types} of frames (and frame analysis) must be assumed. Within the framework of a semantic or conceptual analysis applied to frame theory, the following dichotomies approximately designate level differences that must be taken into consideration in frame theory and frame analysis: \textit{individual} versus \textit{social}; \textit{short-term memory} versus \textit{long-term memory}; \textit{token} versus \textit{type}; \textit{actual (meaning)} versus \textit{occasional (meaning)}; \textit{concrete} versus \textit{general}; \textit{exemplar} versus \textit{category}.

In the description of frames (as conceptual structures), then, the description of the slots or attributes or terminals and their relation among each other and to the frame core, has a central function. This can be defined as follows: the slots (terminals, frame elements, “attributes”) of a frame are the knowledge elements that are connected to a firm set of such elements in a particular frame, and that constitute this frame, and that define the “object of reference” (the “theme”) of the frame. These knowledge elements are not fully specified in their epistemic content; rather, they simply establish the conditions that must be fulfilled by concrete and specifying knowledge elements when they, as constitutive characteristics or components of a frame, are to render said frame an epistemically completely specified (“instantiated”) arrangement of knowledge. As the slots establish concretising conditions for the epistemic characteristics of the fillers, they can also be characterised as a “set of conditions of attributes” (or “set of conditions for attributability”, “set of subcategorisation conditions”).18

In so doing, the following must be taken into consideration: the characteristic of being a slot (a terminal, an attribute) is not attached in an absolute sense to a knowledge element, but only in relation to a higher-ranking frame. In isolation, such knowledge elements form their own frames, with their own slots/attributes in turn subordinated. “Slots” or “attributes” important for an epistemological analysis are those ascriptions of concepts (functioning in this relation as “aspects”) for which there exists, in the linguistic/cultural community in which this attribution occurs, an established convention of attribution. Slots determine the

17 With such structures, linguists immediately think of the valency framework in dependency grammar according to Lucien Tesnière (1959), which are discussed in modern research under the concept of “argument structures”, but also of the concept of “subcategorisation” from the linguistics of the 1970s. A valency framework is opened by a verb. Thus, the verb \textit{give} (as in “donate”) opens a three-place valency framework (one then says that the valency of \textit{give} is three-valued) which provides for places for an agent of the verbal action (subject), the object being given (direct object), and the recipient of the gift (indirect object).

18 In linguistics, the concept of subcategorisation designates e.g. that a verb such as \textit{bark} (of dogs) not only requires an agens as subject (that results already from the valency requirement lexicalised with this verb), but that this agens must belong to a category that is more closely specified by a characteristic such as \textit{doggish, canine}.
relations (and thus also types of relations) which subsist between the frame core and the specified knowledge elements ("fillers", "fillings", "values") which are attached by means of these relations. But the knowledge elements themselves can be characterised as relations between the set of attributive conditions defining them and the frame of reference. In other words, between the slot/"attribute" and the frame core that is thus specified there exists a relation of allocation, a correlation.

A working definition of the fillers or values could be as follows: attributes/fillers/values are those knowledge elements which are attached via slots or terminals to a (general, abstract) frame, so as to make this an epistemically fully specified frame of knowledge (an instantiated frame, an instantiated concept). "Attributes" or "fillers" or "values" important for an epistemic analysis are those attributions of concepts (that function in this relation as "fillers") to other concepts (that function in this relation as "slots") which form expected or possible concretisations/instantiations of the general type conditions of the slot, according to the conditions that define the slot (terminal, attribute) of this frame.

Here, too, it is important to note that the characteristic of being an attribute (a filler, a value) in such a conceptual structure does not attach absolutely to a knowledge element, but only in relation to a superordinated slot (attribute). In isolation, such knowledge elements form their own frames, with their own slots/attributes, in turn subordinated, and attributions/fillers/values. In token frames all attributions/fillers/values must be specified (as far as the conditions of filling determined by the slots or attributes require this).

As long as slots are not taken up (depending on the situation and context) by concrete, specific attributions/fillers/values, they are occupied by standard fillings (default values) added from conventionalised (prototypical) knowledge. Instantiated slots (slots in a substantiated and instantiated frame) can, as a rule, only be taken up by a single attribution/filler (a single value).

To illustrate this, and to make things clearer, the figures below show a schematic representation of two (albeit relatively simple) concept frames according to Barsalou (1992) and then the representation of a predicative frame according to Fillmore and FrameNet (2002):

Fig. 1: Attribute frame for companion according to Barsalou (1992: 33, 62).
A linguistic (semantic) frame analysis, but also a conceptual one, thus registers, with the assumption of “frames”, structures in knowledge (relevant to comprehension). It is generally agreed by nearly all researchers active in frame research that there is no way to distinguish strictly between “linguistic knowledge” and so-called “encyclopaedic knowledge” (or “knowledge of the world”). An important interaction between the “linguistic” and the generally epistemic levels is to be seen in the fact that linguistic signs focus knowledge of the world in a specific manner. (See, for instance, “perspective” according to Fillmore (1977), which he sees realised through the verbs buy, sell, pay, cost in the example of the Commercial Event frame.) But it should be noted here that this interaction between “linguistic” and generally epistemic levels is strongly influenced by recursivity,
Undelimitability, flexibility and vagueness (Barsalou (1993) has emphasised this particularly).

Using the frame model for the purposes of a conceptual analysis (as is the central focus of this examination), frame elements show up as conceptual elements (attachment positions, "slots", "attributes" of a category). Barsalou’s frame elements, which he calls "attributes", are, with reference to the lexeme class of nomina, typically classes of characteristics that can be specified in the reference objects of a category (size, colour, material, etc.). Within the group of characteristical frame elements, one can and should distinguish between so-called structural frame elements and functional frame elements/attributes. Structural frame elements refer typically to attributes such as COLOUR, FORM, MASS in the case of physical entities (things, living things, people); PLACE, TIME, GOAL etc. in actions, events, etc. Functional frame elements/attributes have most recently also been subsumed under the name affordances. Affordances are typically assumed in the case of objects and things (usually artefacts). A possible working definition of “affordance” would perhaps be: functional characteristics, in relation to people, uses, purposes, of things (e.g. nail, hammer, screwdriver, etc.).

Frames can also be regarded as subdivided, organised, in different structural levels. An important type of the internal structure of frames is centred on the pair of concepts type-token. A distinction referring to these might be the distinction between abstract pattern frames and concrete exemplar frames. Strictly speaking, this is not a distinction within a single frame, but a distinction referring to different types or levels of frames. The relationship between the two levels is not only a difference between a structure consisting of empty slots (or slots filled simply with standard values) and a structure consisting of filled (with concrete values) slots. Rather, exemplar frames can augment a pattern frame by adding slots, when these occur more frequently (via a larger number of exemplars, or in especially salient exemplars).

Frames (on the level of general social knowledge structures, i.e. patterns or types) are not simple closed structures. On the contrary, one must reckon with considerable social variance in the degree of “granulation” and differentiation of the frames. Owing to the general principle of recursivity, frames are, in principle, knowledge structures that can be infinitely refined. This shows in that, in social domains with different needs of knowledge, the differentiation of frames varies, too (typically known as the so-called expert/layman divergence).

The key words frame systems or frame nets have been used in the literature hitherto for discussions of conceptual taxonomies (so-called “ontologies”). Beyond the interconnectedness that results in such taxonomic orderings of knowledge, the associative relations between frames and frame elements, based frequently on analogous formation, perception of contiguity, and metaphorical transfer, should not be underestimated with regard to their constitutive and structuring effect on knowledge.

Thus far the general outlines of frame theories as the basis for a semantic frame description, or one using conceptual analysis. It has become clear that some representatives (in cognitive disciplines) of frame theory, at least, conceive of frames primarily as conceptual structures (in a double sense: internal structures of concepts and structures consisting of several concepts, conceptual systems). In this way, frame theory has become an important contribution to a theory of concept. Frames or concepts are seen here as knowledge structures, i.e. as complexes consisting of knowledge elements which are arranged internally in a regulated, structured relationship to each other. The advantage of frame theories as opposed to previous concept theories is to be seen primarily in the ability to allow a structural description of the internal semantic, conceptual or epistemic structure of concepts, based on uniform criteria and a unified model of structure.
4. Frames, Conceptual Orders, Hierarchies and Frame Systems

In work on frame theory, too, it is often overlooked that an important impulse in developing the frame conception was formed by the hope of being able to better and more systematically explain and describe relations between concepts, up to and including complex conceptual systems (concept hierarchies and so-called “ontologies”), with this model. It is not well known that the founder of the cognitive variant of frame theory, Marvin Minsky, in his later monograph for the basis of a theory of cognition (Society of Mind, 1986), complained clearly about, and was surprised at, the reception of the theory, for what he held to be the core and the actual goal (and especially what was really new and went beyond previous scheme theories, for example, that of Bartlett) of his 1974 text had not been noticed at all. This is the aspect which he also used as the title of a partial printing of his paper at that time, namely “Frame system theory”. This aspect still plays hardly any role in research even today, although pursuing it further would be of great use in exploiting the frame model as the instrument of a general analysis of knowledge and epistemology (one could say “the architecture of knowledge”, cf. Busse (2005)). Yet the explanation and description of the relations between frames and the structures within frame systems must remain an important point in any frame analysis, also – and especially –in linguistic semantics, as systematic aspects implicitly result from it again and again, whether in connection with ontologies and taxonomies or in connection with phenomena such as “frame inheritance”, “frame proximity” or “frame analogy”.19

Frames as structures consisting of frames and relations

While Fillmore first conceives of frames in a rather real-world encyclopaedic way, as representations of holistic “scenes”, Minsky builds the idea into his model from the start that frames themselves are in turn structures made of frames. This becomes clear when he defines the so-called “slots”20 as “terminals (‘connective positions’)”, and adds that we use these to add frames to frames. In Barsalou, too, it becomes clear that frames, being constellations of concepts and concepts themselves in turn represent frames, are always structures consisting of frames. As is well-known, Barsalou narrows the whole thing down to this: Frames are basically recursive (all components of frames are themselves frames). Since “attributes” (slots) of a frame, according to Barsalou, are frequently highly complex embedded frames, one could also define a frame as a kind of “mini-system” consisting of frames. But not only slots or attributes are organised like frames; naturally values, including the standard values themselves, invoke frames, as Ziem (2008) emphasises. That is, every frame is, per se, an integral component of an extensive conceptual network (which, according to Ziem, is organised hierarchically by means of superordinate relations). It would be wrong to understand frames as mere formations of elements; they are this, too, but that is not all. By means of the concept of slot, in particular, the aspect of the relational is highlighted. In other words, frames are structures consisting of elements and the relations obtaining between these. More precisely, a good part of what goes to make up frames refers more to relations, types of relations, general conditions for relational attachment and so forth, than to information in the sense of static “elements”. Bartlett had already underlined this thought when he pointed out that any knowledge is always knowledge of relations (interconnectedness). Relationality is already inherent in the concept of scheme (as a predecessor of the frame idea) in the form of a basic characteristic. Barsalou, too, understands frames as “dynamic relational structures” whose

19 The following description is based strongly on chapter 7.6 in Busse (2012).
20 The frequently used German term for the English term “slot”, i.e. “Leerstelle” (“empty position”) is far less adequate than Minsky’s 1974 original term “terminal”, that could be translated to German as “Anschlusstelle” (“connective position”).
form is flexible and dependent on context. An important aspect in frame analysis is formed not only by the frame-constituting relations between the frame core and the sub-frames or value frames (or default value frames) attached by attributes (slots). Equally important are the relations, as Minsky was the first to emphasise, that exist between the elements (concepts, frames) attached to a frame. These relations, too, are not random, but specified, or at least they can be.

While Minsky and Barsalou focus on relations within frames and between frame elements (core, attributes, values) in the same frame (one could call these intra-frame relations, except that there is a risk of absolute misunderstanding, unless one constantly keeps in mind the basic recursivity and non-rigidity of frames), Fillmore is more concerned with the relations between frames (one could then call these inter-frame relations), as they exist in hierarchical, taxonomic circumstances (as super- and sub-frames) – he calls this frame inheritance. Besides this, Fillmore also mentions frame blending and complex frames as types of inter-frame relations. Frame inheritance and taxonomic levels, epistemic frame connectedness and frame systems, types of relation between frames and frame elements and types of frame systems are thus topics within the context of complex frame structures which need to be further investigated. At this point, however, I can only go over them very briefly.

Frame inheritance and taxonomic levels

In the development of the frame model by Fillmore and FrameNet, the idea of frame inheritance plays an increasingly important role. This increasing importance probably has to do primarily with the experience one gains when one attempts to describe the frames for lexematic meanings in linguistic semantics. For there the question very soon poses itself of whether certain slots or attributes that can be determined for a frame-constituting concept should be descriptively registered on a more general or more concrete level. Let us take, by way of example, the frame for a lexeme such as to bark. For the description of the slot AGENS, apparently, one has something of a dilemma as to whether this is to be classified as dog (or having one or more characteristics of a dog), or as animal (with the specification sub-category dog), or as living thing (with the specification sub-category animal, and then the sub-specification sub-sub-category dog), and so forth. In other words, the same problems occur as the ones that always occur in conceptual hierarchies or taxonomies. In frame research, Konerding (1993) in particular has drawn the most radical conclusion from this circumstance, in that he has developed a graded scale of categories in conceptual hierarchies for the description of frames (he calls this approach “hyperonym type reduction”), which, in the end, leads to extremely abstract so-called “matrix frames”, of which the concrete frames are always the sets of derivations or concretisations, attained by reducing the number of slots. The closeness to conceptual systems (a speciality of science in the Enlightenment of the 18th century, thus at the apex of encyclopaedism) is more than merely noticeable.

Fillmore started by introducing and explaining the idea of frame inheritance using the example of frames for verbs. Frame inheritance is the elaboration of a more general (and more abstract) “parent frame” by one or more “child frames”. In so doing, the child frame “inherits” all the frame elements and characteristics of the parent frame, but can “add” its own additional elements and characteristics to these. Examples named include: a general MOVEMENT frame and TRAVEL as its realisation. The parent frame and child frame(s) thus behave towards each other like superordinate concepts and subordinate concepts in conceptual hierarchies (taxonomies) and ontologies (in whose image these frames are clearly conceived of, although this similarity is not more closely examined).

In contrast to such conceptual and hierarchical frame-to-frame relations, designated frame inheritance, the frame relations designated by Fillmore and FrameNet are called **sub-frame relations**.
(or frame compositions) represent a kind of "part-whole relation". A typical example of this are partial actions (or partial course of events) as more comprehensive complex chains of action (or courses of events). Thus, to come back to the example of TRAVEL, partial or sub-frames such as DEPART and ARRIVE show this. Sub-frames share only some frame elements with the superordinated frame (thus, the PERFORMER frame element in the superordinated frame TRAVEL and in the sub-frames DEPART and ARRIVE is identical). It then depends on the specific character of the sub-frame (or the type of embedding of the sub-frame in a superordinate frame) as to what kind of frame elements, and how many, agree in each case. (For example, in a complete PICNIC EXCURSION frame, the PERFORMER frame elements are identical in the superordinated frame TRAVEL and in the sub-frames DEPART, ARRIVE, CONSUME FOOD, but need not be so in the sub-frame PREPARATION OF FOOD).

Larger courses of events or action complexes are, in the FrameNet project, divided into partial actions or events, each of which is then described as a frame (a sub-frame). The analysis does not just touch upon what is recognisable in everyday life as a partial action or partial aspect (as is the case in a TRAVEL frame with the partial aspects DEPART, DRIVE [velsim.] and ARRIVE), but upon very subtle part elements, which can only be tapped intellectually by means of an epistemologically/cognitively oriented breaking down. Their example ARRIVE in "Jack entered the room" can be described as a transition between two conditions (A = Jack is not in the room, B = Jack is in the room), each of which shall represent sub-frames of the superordinate frame. The application of the frame relation "sub-frame" in FrameNet extends from such very subtle partial aspects of events to such "large-scale" frame compositions as the CRIMINAL TRIAL with all its partial events, partial actions, courses of events, etc.

In contrast to inheritance relations, sub-frame relations reflect the relations between constitutive elements of a whole and the whole itself. A sub-frame therefore represents a constitutional relation, while inheritance is an abstractive (or specifying) relation. Each is thus on a different theoretical level. They are, however, connected, insofar as the identification of sub-frames may require undertaking steps of abstraction which do not always reveal themselves in everyday consciousness from the start. Thus far, at least, the registration of this type of frame relation does demand a decidedly abstractive look at frames of the semantically relevant knowledge.

The most important aspect of frame relations according to Fillmore concerns the recurrence of frame elements (in this case: actant frame elements in predicative frames) in several frames, either as identical frame elements or as relations between more general and more substantive versions of frame elements. One could, with the same justification, speak of frame-element relations instead of frame relations. The aim of describing frame relations is primarily to enable semantic generalisations across more than one frame. Referring to the definition of frames, typical for FrameNet, as "systems of concepts", the frame relations are then designated "semantic relations between collections of concepts". With this, the connection between Fillmore's frame inheritance and conceptual taxonomies becomes clear. But with this, the concept of frame inheritance also "inherits" all the problems entailed by "conceptual hierarchies". Here, too, we are dealing with a relation between levels of higher abstraction and levels of lesser abstraction.

Taxonomic "inheritance" relations (in the sense of superordinate/subordinate concept) are what Minsky, too, has in mind, when he emphasises that every frame is embedded in superordinated (higher-ranking) frames. Barsalou concisely sums up this aspect with his recursivity axiom. He particularly underlines the special power of the frame model in analysing taxonomies, "conceptual combinations", and "conceptual fields". The aspect of attributes and values being connected to each other in frames through inheritance relations (i.e. superordinate and subordinate concept relations) leads, then, by the principle of recursivity, to taxonomically graduated inheritance chains. In this sense,
Barsalou speaks of recursively graduated attribute taxonomies. He ascribes an important heuristic value to these for the construction of knowledge systems by the single individual. According to him, frames and frame systems help individuals to develop and build taxonomies from existing epistemic material. He then speaks of “conceptual fields”. Frames and frame inheritance relations can then structure entire complex conceptual fields. Barsalou pleads the case for the strong thesis that “Every frame defines an implicit conceptual field”. These conceptual fields are understood in a purely cognitive way and are not to be equated with the “word fields” of older schools. On the basis of the recursivity of frames, conceptual fields, according to Barsalou, can grow in exponential fashion, but most positions of a conceptual field are not lexicalised (only a minority is).

The taxonomic conception of (or perspective on) frame inheritance and frame systems leads to frame systems sharing the problems of all taxonomic hierarchies, for instance, when one understands them as systems consisting of inheritance relations. These are problems in particular for descriptive linguistic semantics, because some considerable difficulties result for the practical description of meaning. Thus, one can establish an increase in sub-slots, the deeper one enters into a frame hierarchy. (This corresponds to the increase in semantic characteristics on the lower levels of a conceptual hierarchy). Contrariwise, the problem of the abstractness of top-level categories occurs in taxonomies, because they often no longer have a lexematic correspondence, so that one runs into (to some extent serious) problems when naming the descriptive categories. A main problem of taxonomic approaches (at least, if one does not just understand them as a primarily theoretical model, as does Barsalou perhaps, but attempts to understand them as descriptive methods, as does Konerding in particular) is, however, that they pretend to reflect a totality which, in fact, cannot actually be attained with encyclopaedically aligned descriptive models, in contradiction to the very decided claims generally made by these very models.\(^{21}\)

The problem area of *type-token* is strongly involved in the problem area of frame taxonomies. While on the level of the current frame instantiation (a level that Barsalou, for one, primarily, although not exclusively, has in mind) probably “inheritance” relations can be comparatively precisely determined (and the relation between slots and fillers can also be understood as an inheritance relation), on the level of abstract patterns, particularly when the function of signs as either *type* or *token* phenomena also accrues, this is likely to be considerably more difficult. One reason for this is that epistemic relations (knowledge relations) can emplace themselves rampant in actual everyday knowledge, whereby something makes itself felt, that was already one of the main problems of semantics in the 19th century (that, in the end, was implicitly epistemologically oriented), namely “analogy”. As is well-known, human beings are masters at seeing (sensing, feeling) analogies. These do not simply stop where supposedly systematic conceptual hierarchies and inheritance relations seem to tell them to do so (and they do not permit themselves to be limited by such things; apart from the fact that every conceptual system is always the result of a certain, historically perhaps only accidental, view, idea, ideology, or everyday theory, which may confront other views with other criteria of classification and inheritance relations). The aspect of frame inheritance and taxonomic relations must, then, in any adequate frame theory and analysis, always be complemented by the view of other, less systematic, epistemic frame connectedness and systems resulting from “unsystematic” (or systematically/taxonomically not strictly explicable) cross-references/analogy.

In summary, the aspects of frame inheritance and taxonomic orders can be described as

21 For example, the practical test to which Lönneker(2003) (according to Konerding 1993) subjected the taxonomic model of hyperonym type reduction is very sobering. Konerding’s top level frames (which he names “matrix frames”) covered only 38% of lexemes in one of Lönneker’s corpora in a first step. Only after they were complemented by new, ad-hoc matrix frames did they manage to cover 89%!
follows: Frames are recursively hierarchised structures consisting of knowledge elements that can, in turn, be described as frames. In this sense, frames are always structures made of sub-frames and supra-frames. A central aspect of frame structures is that, as we have seen, attachment positions (slots, terminals, attributes) can determine categorial characteristics of what is attached (fillers, values). In the taxonomic view, this affects things in such a way that the fillers “inherit” categorial aspects from their slots. This aspect can be called frame inheritance. Inheritance, seen this way, is a typical characteristic in hierarchically graduated conceptual systems i.e. in conceptual taxonomies, to put it briefly. Besides the inheritance relation between slots and fillers (attributes and values), there are also inheritance relations between frames and superordinated (more abstract) frames, in regard to which the given frames represent specialisations.

It is important now to realise that such inheritance relations do not only refer to individual, isolated conceptual characteristics (knowledge elements). An essential effect of the recursivity of frames and frame structures is to be seen, rather, in the fact that certain constellations of frame elements (together with the typified relations existing between them) can also be inherited. This serves in the main to unburden cognition, since certain constellations of frame elements then only need to be stored once for an entire system of hierarchically graduated frame elements (or only the differences, additions or reductions). This can be observed in actant constellations in actant frame systems. For example, numerous frame elements are typologically identical in the specialised individual frames of a TRANSPORT frame system (PLACE OF DEPARTURE, DESTINATION, ROUTE, DIRECTION, ENERGY EXPENSE, etc.). But it can be observed in other categorial frames and their frame elements of characterisation. Thus, in frames for PHYSICAL OBJECTS, frame elements such as FORM, COLOUR, SIZE, MATERIAL are always present (if not always relevant to the same extent).

Sub-domains of such inheritance relations can be organised (or described as such) in taxonomic, hierarchically constructed conceptual systems, as far as the material or the subject matter permits. I regard the construction of such hierarchical taxonomies (or rather: partial taxonomies) as an instrument of human cognition or epistemes, which is better adapted to certain subjects and areas of life, and less so to others. To put this in a different way: one may not misunderstand the taxonomic character of conceptual systems or frame systems as a value in itself (and one most definitely may not hold this to be ubiquitous); rather, one must always keep the instrumental character (sometimes productive, but sometimes misleading, too) in mind. Looked at this way, we must agree with the approach set forth by Fillmore and FrameNet, which says that taxonomic inheritance relations should only be assumed in the description/analysis where they are unavoidable and have a recognisable additional benefit.

Epistemic Frame Connectedness and Frame Systems

Frame research was drawn early on to the relations between frames and frame connectedness in knowledge which cannot simply be reduced to taxonomic structures. Various kinds of frame connectedness were identified. Fillmore pointed out, comparatively early, that not only the activation of a single frame/schema was needed for lexeme-related knowledge, but also knowledge of the schemata (scenes, frames) with which the

22 And the specific thing of a “Beam me up, Scotty!” frame is roughly that the frame element PATH, provided by the system, is more or less null instantiated, at any rate dissolved from its normal characteristics, irrelevant.

23 These are called, terribly misleadingly, “ontologies” in computer linguistic (and to some extent in cognitive) literature.

24 It is in any case known from cognitive lexicology that a median level of taxonomy (not too abstract, not too concrete) is evidently preferred in the mental lexicon.
word/lexeme itself (or the frames it activates) is connected. Fillmore mentioned structures similar to lexical/semantic fields by way of example, although he regarded the actual theory of semantic fields as inadequate. If one leaves Fillmore’s frame concept to one side, one can also understand the verb frames (such as BUY, SELL, PAY, COST), which realise different perspectives of a common total “scene” (“commercial event”), mentioned by him and used as the starting point for the development of a frame theory, to be partial frames of an interconnected frame system. Minsky extended this aspect of perspectivisation to perspective in the literal sense in visual perception, and described the different perspective frames, each processed and constituted separately by the cognitive apparatus of an individual, of a visually perceived object (e.g. a table, one of whose legs is completely covered, two others partially so) as elements of a “frame system” (of the “total object”, which cannot then be a purely “visual” system, but rather a remembered cognitive or epistemic system, since there can principally be no “total perspective” on a visually perceivable object). Such “frame systems” exist naturally not only for various visual perspectives (as in Minsky), but generally as epistemic systems. Fillmore’s perspective frames on action complexes or events are an example of this. Frame systems as combinations of several perspectives or single aspects are therefore a more general phenomenon of knowledge and its structures.

Basically, a high degree of complexity and structuredness of the knowledge relevant to comprehension must be assumed. Frames are the format for the organisation of such structures, and thus particularly of the frame systems and networks, too. Beyond the interconnectedness which is a result of taxonomic orders of knowledge, the associative relations between frames and frame elements, often based on the formation of analogies, the perception of contiguities, and metaphorical transfers, should not be underestimated with regard to their constitutive, structuring effect on social and individual knowledge. Frame systems can constitute themselves, in that the various individual frames of a system share common basic constituents (slots, attributes) or even groups of these (this is the case in the various types of perspectivising frames that “look” at the “same thing”); for they are then comparable to inheritance relations, for which the same is true. Frame networks are, however, also created by slots in other frames being occupied by more complex frames, and thus entangled with their epistemic structure. (That is the case, for instance, when, in the legal term theft, the complex legal frame property plays a constitutive role in the meaning). The description of such structures and networks of frames is a matter for applied epistemology and has a clearly encyclopaedic character. This circumstance is best recognised in the Fillmore/FrameNet project association, where the taxonomic considerations have been reduced to the minimum in favour of a more descriptive, “thesaurian” approach to analysis, of which its supporters as linguists believe that it is most adequate to match the objects of a linguistic semantics.

Frames or frame elements (or groups of frame elements) not only belong to one and the same frame (e.g. as slot frames and filler frames that are assigned to a category concept as the elements constituting such a frame), but go beyond this and form connections with differing degrees of epistemic solidity. If such connections are of a certain duration and stability, then one can speak of frame systems or frame networks. With regard to such connections, one can distinguish the following different types of frame system (without any claim to systematicity and pureness of criteria):

1. Frames as a frame system–Naturally every frame is first of all a frame system in itself

25 For these “frame systems”, too, the following is valid: the different frames of a system share the same slots. One can see quite well that this is not just a characteristic in inheritance relations. I would assume rather that such relations, as they are described here by Minsky, enjoy priority to the inheritance relations in taxonomic conceptual systems. Hence, the latter prove to be a special case of a more general phenomenon, for which Minsky’s examples represent something like the original form.
(owing to the principle of recursivity), because it consists of subordinate frames (sub-frames, e.g. in the case of an instantiated frame consisting of attribute frames and value frames). One of the prototypes of such a “frame system” most dealt with in the literature are the object frames for physical objects. (Minsky in particular called these “frame systems” and added: completely formed frame systems exist only for the most important objects [not for all objects!]). In this case, one could speak of “micro-frame systems”. The pertinent type of relation for such frame systems is the slot-filler relation.

2. **Taxonomies**—Taxonomies are complex macro-frame systems that divide into numerous levels and groups of subordinate frame systems. (A typical case for this may be observed in the well-known conceptual hierarchies). The type of relation pertinent to taxonomies is the relation of the hierarchy (superordinate or supra-frame, subordinate or sub-frame). Superordinate frames in taxonomies determine the frame elements (slots, default values) of the subordinate frames (either individually, as an inheritance of frame elements, typically however as the inheritance of groups of frame elements).

3. **Congruency networks**—In contrast to the hierarchical relations in taxonomies, frame systems in the sense of congruency networks are based upon the agreement of individual knowledge elements. The pertinent type of relation for congruency networks is the relation of parallelity (or more precisely: congruency in the absence of hierarchical relations). Here, neighbouring frames share single frame elements or groups of them. (A connection to taxonomy exists in that co-hyponyms in a hierarchy are always also congruency networks in the sense defined. Perhaps – or probably, presumably – congruency networks are a prerequisite for the creation of taxonomies). A special case of such a congruency network is the well-known “lexical/semantic field”.

4. **Seriality networks**—The individual frames in seriality frame networks can share single frame elements or groups of these (and they do this as a rule, too), so that they agree in this regard with congruency networks, although this is by no means necessarily so. The pertinent type of relation for seriality networks is the relation of the consequential (result) relations in the broadest sense. Seriality networks occur in the form of event frame systems and action frame systems (or as mixtures of the two). One can (and should) distinguish at least the following sub-types of seriality:

 a. **temporal seriality**—Chronological sequences are meant (“series” in the most narrow sense), with no implication of any logical causal relation. Most forms of such temporally constituted frame networks will be culturally conditioned (if they are not causal) and for this reason cannot always be reliably delimited against sub-type (b). (An example could be WORK-OUT IN THE GYM and then right after that VISITING THE SAUNA THERE).

 b. **culturally conditioned seriality**—Sequences of action frames or event frames or both are meant, established in cultural knowledge in that there is a socially anchored knowledge (in the sense of conventions or prototypicality) of their seriality (context of result relations). (An example could be, in contrast to the example above under (a), SKIING and APRES-SKI; in particular, however, institutionalised systems of consequences with result relations, such as SERMON and BLESSING, or Fillmore’s CRIMINAL TRIAL etc.). As far as they are not based on causal relations, the *scripts* in the sense of Schank and Abelson (1977) (at least to some extent) belong to this sub-type.

 c. **causally conditioned seriality**—What is meant here are frame systems that connect frames on the basis of causal relations. Causal relations are a type of such result relations about which there exists solid individual or social knowledge, or both, on the foundation of reliable supra-individual sources of knowledge. At the core of causality, reliable coherence naturally exists; but there is also socially (or culturally) conditioned causality (of the type of result requiring no further verbalisation: “They caught John with a BAC of .15...”). Causal

26 Congruence networks in the sense thus defined correspond to what Minsky called “similarity networks”.
seriality always presupposes temporal seriality (a result cannot exist in the world before its cause), and is therefore, in the end, a special case of temporal seriality. The descriptive or backward-directed perspective of causality corresponds to the forward-directed or hypothetical perspective of conditionality. The frame relation types causality and conditionality play an important role in the so-called scripts; prior to systematisation of the script analysis, the script concept should not be determined for causality and conditionality too quickly (as wrongly happens in Schank and Abelson). Between causal, cultural and temporal seriality relations there are mutual overlaps, so that frame systems (such as, for example, scripts or script systems) are likely to be mixtures of different seriality types as a rule. The plans, goals and themes postulated by Schank and Abelson are sub-types of frame systems closely associated with causal and conditional relations.

d. linguistic seriality—A further sub-type of frame network could be seen in linguistic seriality, as it occurs, for instance, in all syntagmatic relations (which one could also designate syntagmatic contiguity). Barsalou’s naming sentences and texts as examples of frame networks would belong here. But simple sentences, at any rate, belong (in the sense of Fillmore’s predication frame model) to type 1 (frames as frame systems). Complex texts (e.g. tales, novels, scientific monographs) are very special and strongly convoluted frame systems requiring special treatment and can hardly be completely comprised in the course of a pure frame analysis, or at least they would strain frame semantics to the point of breakdown.

5. Associative networks—the type of frame systems or networks with the “weakest” form of relations are the associative networks. The relations pertinent to associative networks occur in different forms. Relevant types of relation are at least the relations of contiguity, similarity, partial congruence (e.g. semantic isotopies in the sense of Greimas (1969)), and the (procedural) correlations/co-occurrences.

a. Contiguity—This type of relation is constitutive of frame system type (5) only then, when we are not dealing with contexts already created by another type (for instance, by type (1) frames as frame systems). (Thus, for example, the pars-toto contiguity is to be counted – as a rule – as type (1)). Contiguity always occurs when certain frame connections do not belong to the knowledge constituting concepts, yet are frequently to be expected. \(^{27}\) Contiguity can create frame systems or networks, but does not necessarily have to. That is true particularly of the following sub-type.

b. Similarity—The relation of similarity (in its constitutive form for frame networks) is always strongly dependent on subjective evaluation and perceptions; similarity must be seen. \(^{28}\) But numerous words may possibly exist in natural languages that, in the end, are based on something very much like similarity networks. (Take some fashionable expression, such as chav, as a label for a class of object frames whose close relation is not strictly defined by an element congruence, but rather via associative relations. Then we do not have striceto sensu a “concept”, but a word which is a label for an associative frame network – here in a pejorative sense as a social stereotype).

c. Partial congruence—In contrast to the frame system type (3) as explained above, that is, the congruence networks in which the agreement or congruence generally extends over a larger number of frame elements of the frames of the system or network that are involved, with this sub-type (5c) frame networks are meant, whose connectedness is created by only a few, or even a few individual, frame elements. A rather better-known case of this is represented by certain types of the so-called isotopic relation (defined on the basis of

27 Thus, there were times, for example, when the frames AUTOMOBILE and GLOVES entered a solid connection in the sense of contiguity (occur in common, but without necessity).
28 When Minsky, then, designates the congruence networks, in the sense defined above, “similarity networks”, this is misleading, for he means factual agreement in clearly determinable frame elements, which does not apply to the usual understanding of similarity.
individual semantic characteristics, thus not of entire meanings or concepts), as Greimas postulated them within the framework of the structural semantics of the 1960s. Isotopic relations create associative chains and can thus constitute entire networks out of the frames involved. Possibly, affordances are particularly well-suited to creating such associative frame networks as go back to only a single element (e.g. the associative frame network, tried and proven a thousand times in party games: “what I would take with me to a desert island”).

d. (procedural) correlations/co-occurrences – Finally, there may possibly exist a type of associative frame networks that are created by something that one might call procedural contiguity, and that cognitive psychologists might describe like this: whatever is frequently processed together cognitively, can enter into associative concatenations in the memory. Every language system knows such forms of concatenation based on procedural co-occurrences. In particular, however, there are probably mixed forms of connection, created by frequent or salient co-processing between the data of various channels of perception (seeing, hearing, smelling, tasting, feeling).

5. Performance and Limits of Frame-Semantic Analyses

The empirical research on frame analysis is still too new and too rarely applied – in the sense of systematic research comprising the entire spectrum of theoretical models and possibilities – as yet to have attained a conclusive evaluation of its potential and its limits. Linguists such as Fillmore and cognitive scientists such as Minsky and Barsalou have made impressive lists of what might be researched with the help of (in each case different) frame models in the field of concepts and language in the broadest sense. Beginning with verbs, nouns and sentences, through cognitive concepts, texts, morphemes, metaphors, anaphors, presuppositions, to prepositions and conjunctions – nearly everything in the field of linguistics has been named as a possible field for the application of some kind of frame research. The programmatic part, then, is certainly ambitious.

However, one must surmise that it is not going to be this way; all the phenomena named will not be analysed equally well (or even well at all) with the same frame model. One must ask, for example, whether the “background frames” (or “scenes”) so often appealed to by Fillmore would even be registrable by a Barsalou model of frames. It is true of many of Fillmore’s prime examples (orphan, widow, bachelor, vegetarian, on land, on the ground) that the knowledge, to the role of which for adequate comprehension he wishes to allude with these very examples, can be so complex and demanding that a suitable paraphrase may require a greater number of additional frame elements (structures, relations), which in turn need to be analysed in all of their elements in a frame-semantic way, and determined. In this way, one would rapidly arrive at a rather complex description. This is true too, as we have seen, of analytically complex concepts such as those typical of the world of law, but certainly also of other kinds of complex concept, such as those in philosophy, or maybe the basic historical and social concepts as Koselleck(1972) and others saw them. Such complex structures probably will not permit a description within a single frame description (and certainly not, if this is a graphic), but must be divided into numerous sub-structures, each of which is first investigated for its own sake, before they are embedded in

29 Much of that called by Fillmore i.a. “constructions” may belong to this.
30 This is certainly where the phenomena of so-called synaesthesia belong; these can grow to be genuine illnesses. In particular, certain types of traumatic disturbance are a part of this too. (This sub-type 5d may not be easily separable from sub-type 5a of associative contiguity).
superordinated structures in a procedure of many stages.

It would, then, be wrong to see a magic genie in frame theory, that would solve all theoretical problems of concept or semantics and goals of investigative aims. The frame theory is strong where it fills in the gaps left by older theoretical conceptions of meaning (such as feature semantics, logical semantics, word-isolating lexical semantics, the logic-based compositional sentence semantics, the word- and concept-isolating historical semantics). More precisely, wherever the scope, the complexity, the subtlety, the power to distinguish, and the epistemic connectedness of the knowledge relevant to comprehension or to concepts has been (sometimes severely) underestimated in older models, there frame theory can operate. In the field of analysing complex conceptual structures, concept competition, and change in concepts, frame analysis can unfold its special ability to perform, and is, as far as I can see, superior to other approaches. The limits of its possibilities become (and can become) visible only when these possibilities are realised in empirical analyses of the most various kinds in the most various fields of semantics or concept analysis and thus tested in practice. The history of concepts and the investigation of conceptual systems could be one of these fields.

6. References

Busse, Dietrich. 2008a.“Semantische Rahmenanalyse als Methode der Juristischen Semantik. Das verstehensrelevante Wissen als Gegenstand semantischer Analyse.”

